Age-at-Onset in Late Onset Alzheimer Disease is Modified by Multiple Genetic Loci

A full list of authors and affiliations appears at the end of the article.

Abstract

Importance—As APOE locus variants contribute to both risk of late-onset Alzheimer disease and differences in age-at-onset, it is important to know if other established late-onset Alzheimer disease risk loci also affect age-at-onset in cases.

Objectives—to investigate the effects of known Alzheimer disease risk loci in modifying age-at-onset, and to estimate their cumulative effect on age-at-onset variation, using data from genome-wide association studies in the Alzheimer’s Disease Genetics Consortium (ADGC).

Design, Setting and Participants—the ADGC comprises 14 case-control, prospective, and family-based datasets with data on 9,162 Caucasian participants with Alzheimer’s occurring after age 60 who also had complete age-at-onset information, gathered between 1989 and 2011 at multiple sites by participating studies. Data on genotyped or imputed single nucleotide polymorphisms (SNPs) most significantly associated with risk at ten confirmed LOAD loci were examined in linear modeling of AAO, and individual dataset results were combined using a random effects, inverse variance-weighted meta-analysis approach to determine if they contribute to variation in age-at-onset. Aggregate effects of all risk loci on AAO were examined in a burden analysis using genotype scores weighted by risk effect sizes.

Main Outcomes and Measures—Age at disease onset abstracted from medical records among participants with late-onset Alzheimer disease diagnosed per standard criteria.

Results—Analysis confirmed association of APOE with age-at-onset (rs6857, P=3.30×10^-96), with associations in CR1 (rs6701713, P=7.17×10^{-4}, BIN1 (rs7561528, P=4.78×10^{-4}), and PICALM (rs561655, P=2.23×10^{-3}) reaching statistical significance (P<0.005). Risk alleles individually reduced age-at-onset by 3-6 months. Burden analyses demonstrated that APOE contributes to 3.9% of variation in age-at-onset (R^2=0.220) over baseline (R^2=0.189) whereas the other nine loci together contribute to 1.1% of variation (R^2=0.198).

Conclusions and Relevance—we confirmed association of APOE variants with age-at-onset among late-onset Alzheimer disease cases and observed novel associations with age-at-onset in CR1, BIN1, and PICALM. In contrast to earlier hypothetical modeling, we show that the combined effects of Alzheimer disease risk variants on age-at-onset are on the scale of, but do not exceed, the APOE effect. While the aggregate effects of risk loci on age-at-onset may be significant, additional genetic contributions to age-at-onset are individually likely to be small.

Address correspondence to: Margaret A Pericak-Vance, PhD, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, BRB-318, Miami, FL 33136, Office: (305) 243-2308, Fax: (305) 243-1968, mpericak@med.miami.edu.
INTRODUCTION

Alzheimer Disease (AD) [MIM 104300] affects more than 13% of individuals aged 65 years and older, and its prevalence increases with age, occurring in fewer than 1% of those age 65 years and younger and in as much as 40% of the population after age 90.\(^1\)-\(^4\) While genetic studies of late-onset Alzheimer Disease (LOAD) confirmed at least ten loci contributing to risk of disease, including APOE, PICALM, CLU, CR1, BIN1, CD2AP, EPHA1, MS4A4A, CD33, and \(ABCA7\),\(^5,6\) genes modifying age-at-onset (AAO) of LOAD have not been widely studied. Earlier linkage and candidate gene studies identified only a few loci possibly underlying variation of AAO (e.g., \(GSTO1\)),\(^7\) but only variation in the \(APOE\) region has been consistently confirmed.\(^8\)-\(^12\)

A multitude of studies have attempted to identify susceptibility genes for AAO in AD. The first study to identify a genetic association with AAO showed a lower mean AAO among cases for each additional copy of the \(\varepsilon4\) allele at the \(APOE\) locus on chromosome 19q (0 copies: 84.3 years; 1 copy: 75.5; 2 copies: 68.4),\(^13\) a finding which has since been replicated.\(^14\) Subsequent genome-wide linkage scans examining AAO in AD patients and unaffected family members (using age at study entry) found suggestive evidence of linkage on chromosome 19 to \(APOE\) (LOD = 3.28),\(^15\) which was confirmed in later studies.\(^16\) Multiple studies identified other suggestive linkage signals on chromosomes 4q, 8q,\(^16\) 1q, 6p,\(^17\) 7q, 15, and 19p\(^18\) in Caucasian families, and chromosomes 5q, 7q, 14q, and 17q\(^19\) in Caribbean Hispanics, though the specific loci driving these linkage signals remain unknown. More recently, an AAO GWAS in 2,222 Caucasian AD cases confirmed association at \(APOE\), and also found strong evidence of association (\(P=4.95\times10^{-7}\)) on chromosome 4q31.3 in the gene \(DCHS2\).\(^20\)

The lack of overlap in the regions identified across these studies may have resulted from differences in the approaches applied, such as varied strategies for censoring unaffected pedigree members and differences in covariates adjusted for in analyses. Reduced statistical power from the limited availability of extended families for analysis may also have contributed to the differences in findings between these early linkage and association studies. The high variability in approaches and findings highlights the need for a more comprehensive approach to identify genetic risk factors which may influence LOAD AAO as well as LOAD risk directly. Notably, variants in the ten confirmed LOAD risk loci have not been examined for their possible influence on AAO among LOAD cases.

Using data from 9,162 LOAD cases from a recent genome-wide association study (GWAS) of LOAD by the Alzheimer’s Disease Genetics Consortium,\(^6\) we examined whether variants most significantly associated with LOAD risk in 10 LOAD loci are also associated with differences in AAO among LOAD cases. Furthermore, we used a genetic burden analysis
approach to determine the proportion of variation in AAO accounted for by variants in these established LOAD risk genes.

MATERIALS AND METHODS

Ascertainment and Collection of Genotypic and Phenotypic Data

A detailed description of ascertainment and the collection of genotype and phenotype data in the individual datasets of the ADGC is available elsewhere. Briefly, subjects in each dataset (eTable 1) were genotyped using either Illumina or Affymetrix commercially-available GWAS high-density SNP genotyping microarrays. All LOAD subjects met NINCDS/ADRDA criteria for definite, probable or possible LOAD, and age-at-onset (AAO) of LOAD, which was abstracted from medical records for most subjects, was defined as the age when LOAD-related symptoms manifested, as reported by the subject or an informant. Age-at-ascertainment (WU, ADNI) was substituted for datasets lacking AAO information (eTable 1). Unaffected subjects and LOAD cases lacking AAO information, cases with an age-at-onset or age-at-death less than 60 years, and non-Caucasians of European ancestry were excluded from the association analyses. Post hoc analyses revealed no significant differences in association findings between subjects with age-at-onset and those with age-at-ascertainment information (data not shown).

Quality Control

Subjects were excluded if Affymetrix chip genotypes were called for fewer than 95% of SNPs or if Illumina chip genotypes were called for fewer than 98% for SNPs. Additionally, samples were excluded if reported gender differed from genetic gender by X-chromosome analysis (PLINK software). Samples were dropped from family datasets if reported relationships differed from estimated relatedness from IBD using the program PREST. If samples were duplicated in different datasets, only one sample per duplicate pair was kept in analysis. After exclusions, data on 9,162 cases remained for subsequent analyses.

After sample quality control, genotyped SNPs were excluded from analysis if their minor allele frequencies (MAF) were less than 0.02 for Affymetrix chips or less than 0.01 for Illumina chips, or if the SNPs were observed to be out of Hardy-Weinberg equilibrium with $P < 10^{-6}$. Imputed SNPs were excluded if the quality score (“Info” from IMPUTE2) was less than 0.50. Genome-wide genotype imputation was performed in each cohort using IMPUTE2 software with 1000 Genomes (December 2010 release) CEPH Utah pedigree (CEU) reference haplotypes. Imputation quality was assessed using the ‘Info’ statistic, and only SNPs imputed with Info ≥ 0.50 were included in analysis. The ten SNPs examined here were among the common set of SNPs produced in imputation.

Statistical Analysis

We performed association analysis on individual datasets assuming an additive model on log-transformed age-at-onset with covariate adjustment for population substructure. For cases from case-control datasets, linear regression was performed in PLINK while for analysis of cases from family datasets (used only in the primary analysis of risk variants), generalized estimating equations (GEE) with a linear model as implemented in the R
statistical package were used. To account for the effects of population substructure, we performed a principal components (PC) analysis on cases within each dataset using EIGENSTRAT on a subset of 21,109 SNPs common to all genotyping platforms. The first three PCs from analysis were incorporated in our minimal model for covariate adjustment. We also performed analyses conditioning on the major AAO-modifying effects of APOE through an extended model of covariate adjustment which included sex and number of APOE ε4 alleles (0, 1, or 2). Results from individual datasets were combined in the meta-analysis using inverse-variance weighting as implemented in METAL, applying a genomic control to each dataset. With this set of 9,162 cases, we expected to have 80% power to detect loci with as little effect as 9 months difference in AAO per allelic copy for very common variants (MAF>0.34), with power to detect 1 year difference in AAO per allelic copy for variants of even modest frequency (MAF>0.14).

We performed a discovery genome-wide association meta-analysis among 6,143 cases in 10 ADGC case-control datasets to determine whether SNPs with more modest LOAD risk associations may contribute to differences in AAO, and to assess genetic burden attributable to these variants. Methods, results, and a brief summary are provided in the eAppendix.

In addition to association meta-analysis, we performed genetic burden analyses to determine the percent contribution of LOAD susceptibility SNPs in ten LOAD candidate genes to variation in AAO. Risk-weighted genetic burden analyses of AAO linearly modeled locus-specific effects as the product of the meta-analysis-estimated effect size (across-study change in AAO for each copy of the minor allele) and the dosage of the minor allele (scale 0-2; estimated from genotype-specific imputation probabilities), and were implemented in analyses of risk variants. Additional covariate adjustment in the burden model included covariates for population substructure from principal components analysis and dataset-specific effects.

RESULTS

ADGC Data Characteristics

Descriptive characteristics of the individual ADGC datasets are shown in eTable 1. There were more female cases (N = 5,480; 60%) than males. The mean age-at-onset of was 74.3 years (y) (standard deviation = 7.64 y) for the entire group. Several datasets had later ages at onset; two of these were population-based cohorts of aging and memory loss, ROSMAP [mean AAO (SD) = 85.6 y (6.26 y)] and ACT [mean AAO (SD) = 83.9 y (4.76 y)], and one case-control dataset, OHSU, which intentionally ascertained individuals with later age-at-onset [mean AAO (SD) = 86.1 y (5.53 y)]. While data from these studies did not largely change the patterns of association observed (data not shown) in association testing, we performed several sub-analysis to assess their effect on the genetic burden analyses as described below.

LOAD Susceptibility Variant Associations with AAO

We confirmed the association of the APOE ε4 allele with lower AAO, with each additional copy of the ε4 allele reducing AAO by 2.45 years (β=−2.45; P=3.30×10^-96). Examining the
variants most strongly associated with LOAD in nine genomic regions with genome-wide statistically significant associations in our GWAS of LOAD risk (Table 1). We observed that several LOAD risk loci also demonstrated statistically significant associations ($P<0.005$) with AAO, including rs6701713 in CRI ($P=7.17 \times 10^{-4}$), rs7561528 in $BIN1$ ($P=4.78 \times 10^{-4}$), rs561655 in $PICALM$ ($P=0.00223$). Both rs6701713 in CRI and rs7561528 in $BIN1$ demonstrated a reduced age-at-onset for each copy of the risk variant with each copy of the risk allele A at rs6701713 (MAF=0.24) advancing AAO by approximately five months [β (95% CI): -0.41 (-0.65, -0.17)], and each copy of the risk allele A at rs7561528 (MAF=0.37) advancing AAO by slightly less than four months [β (95% CI): -0.31 (-0.52, -0.09)]. In contrast, each copy of the more common risk allele (A; frequency=0.62) at rs561655 in the $PICALM$ gene corresponded with earlier onset by approximately four months [β (95% CI): -0.33 (-0.55, 0.12)]. These patterns of association remained largely unchanged after adjustment for $APOE$ ε4 allele dose and sex for the CRI and $BIN1$ variants [rs6701713: -0.41 (-0.69, -0.12), $P=0.00488$; rs7561528: -0.32 (-0.57, -0.08), $P=0.00985$]. While the size and direction of the association remained the same as in the minimally adjusted model, the association of the $PICALM$ variant demonstrated only marginal significance after this additional adjustment [rs561655: 0.32 (0.07, 0.57), $P=0.0112$]. Investigation of AAO associations in the vicinity of these AD risk variants revealed no substantially different associations among nearby variants. Directions of variant effects were concordant between AD risk and AAO; all variants that increase risk also lower AAO.

Genetic Burden Analysis of AAO with LOAD Risk Variants

We examined the genetic burden of $APOE$ and the LOAD risk variants in the nine genomic regions on variation in AAO (Table 2) in the 14 ADGC datasets with complete AAO data. In our baseline model, 19% of the variation in AAO ($R^2=0.189$) was accounted for by population substructure and study-specific effects. The independent contributions of dosage of the $APOE$ ε4 allele to genetic burden was roughly 3.1% of AAO variation ($R^2=0.220$) while the cumulative effect of the nine LOAD risk variants was 0.93% ($R^2=0.198$), together accounting for approximately 4.1% of genetic variation in AAO ($R^2=0.229$). Excluding study-specific effects, $APOE$ accounts for 3.9% of the remaining variation, the nine LOAD risk variants account for another 1.1%, for a combined contribution of 5% of the variation of AAO. Variant effects in burden modeling were consistent with the association results for individual variants described above.

To determine whether ascertainment differences may have influenced the amount of variation in AAO attributable to LOAD risk variants, we examined the effects of the three datasets with much later average AAO (ACT, OHSU, and ROSMAP) and the two-family based datasets (NIA-LOAD and MIRAGE) on genetic burden analyses. In analyses excluding the datasets with later average AAO (eTable 2), we found that these datasets account for much of the dataset-specific AAO variation, reducing the effect of dataset on AAO variation from nearly 19% to 1.7% ($R^2=0.0165$). In these analyses, after excluding dataset-specific effects, the percent variation attributable to $APOE$ was slightly lower at 3.6% ($R^2=0.0523$), the effect attributable to the nine LOAD risk variants was similar to before at 1.1% ($R^2=0.0270$), and the combined contribution of both was observed to be 4.7%
(\(R^2=0.0631\)). Removal of the family datasets (eTable 3) did not appreciably change the variation attributable to study-specific effects (\(R^2=0.221\)), nor did it substantially change the relative effects of \(APOE\) and the 9 LOAD risk variants on AAO variation.

DISCUSSION

Our analysis of more than 9,000 LOAD cases with age-at-onset information is the largest genetic study of LOAD AAO to date. Examining AAO associations at LOAD risk loci, we confirmed the association of \(APOE\) region variation with AAO and found additional strong associations with AAO among variants at three of the other nine established risk loci (\(CRI, BIN1,\) and \(PICALM\)). Burden analysis demonstrated that the cumulative variation explained by SNPs at nine LOAD risk loci was about a third as much as the percent variation in AAO from \(APOE\). The smaller effect of \(APOE\) \(\varepsilon4\) on differences in AAO here (3-4%) than in previous studies (7-9%)\(^{29}\) may be due to differences in study design; for instance, all previous estimates were made in multiplex pedigrees, whereas most cases examined here were unrelated (2,302 of 9,162 [25.1%] of cases were from family datasets). However, in addition to confirming the predominance of the effect of \(APOE\) on AAO, we showed that the cumulative effects of risk loci associated with AAO may have an effect of similar scale on AAO. In our secondary analysis of genome-wide association, cumulative effects on genetic burden of SNPs associated with AAO but with little or no effect on LOAD risk accounted for more variation in AAO compared to the non-\(APOE\) risk variants (2.2% vs. 1.1%), but were still dwarfed by the effects of \(APOE\) on variation in AAO (~4%).

Several previous studies have suggested potential associations of risk variants at these loci with AAO. A recent study using a small subset of the cases used in this study (ADC1-3; \(n=2,569\)) identified an association with a \(PICALM\) risk variant (rs3851179, \(P=0.008.6\times10^{-3}\)).\(^{10}\) A study of the expression of the 10 LOAD risk genes in parietal lobe neurons from an autopsy series of AD brains demonstrated nominally significant evidence of an association between reduced \(BIN1\) expression levels and earlier AAO (\(P=0.041\)),\(^{30}\) as well as an association with a longer duration of disease. A study by Jones et al. (2013)\(^{31}\) among persons with Down Syndrome, which is typically associated with elevated AD risk at an earlier AAO, showed risk variants in \(APOE\) (\(P=0.014\)) and \(PICALM\) (\(P=0.011\)) to be correlated with lower AAO in AD patients with Down syndrome.

Daw et al analyzed families with a high burden of AD and later age of onset in a multiplex family data set\(^{29}\) and found evidence for at least four additional genes with major effects on variation in AAO as large as those of \(APOE\). The lack of major AAO-modifying effects outside of \(APOE\) in our study is not consistent with the Daw et al study and may reflect genetic heterogeneity of age-at-onset genetics within late-onset AD or, more likely, indicate the existence of large effect modifiers enriched in families with multiple affected members. \(APOE\)-related survival effects may have further complicated the identification of AAO-modifying genes. Furthermore, other genetic mechanisms including the effects of rare variants, epigenetic modification, and gene-environment interactions, which have been reported to influence dementia risk and cognitive decline,\(^{32-37}\) may also contribute to variation in age at onset of AD. Identification of other genetic modifiers of age-at-onset through studies of larger samples of LOAD cases and studies using next-generation...
sequencing approaches which can more thoroughly interrogate the genome may yet yield additional genetic risk factors that influence age-at-onset and provide new insights into LOAD pathogenesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors

Affiliations

¹The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida

²Department of Medicine (Genetics Program), Boston University, Boston, Massachusetts

³Department of Biostatistics, Boston University, Boston, Massachusetts

⁴Department of Ophthamology, Boston University, Boston, Massachusetts

⁵Taub Institute on Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University, New York, New York

⁶Gertrude H. Sergievsky Center, Columbia University, New York, New York

⁷Department of Neurology, Columbia University, New York, New York
8Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida
9Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
10Department of Biology, Brigham Young University, Provo, Utah
11Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona
12Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida
13Department of Neurology, University of Washington, Seattle, Washington
14Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington
15Department of Neurology, Mayo Clinic, Rochester, Minnesota
16Department of Genome Sciences, University of Washington, Seattle, Washington
17Department of Medicine (Medical Genetics), University of Washington, Seattle, Washington
18Department of Medicine, University of Washington, Seattle, Washington
19Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario
20Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
21Department of Psychiatry and Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, Missouri
22Department of Neurology, Oregon Health & Science University, Portland, Oregon
23Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon
24Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
25Department of Neurology, Mayo Clinic, Jacksonville, Florida
26Institute of Neurology, University College London, Queen Square, London, UK
27Division of Genetics, Department of Medicine and Partners Center for Personalized Genetic Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
28Group Health Research Institute, Group Health, Seattle, Washington
29Cambridge Institute for Medical Research and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
30 Department of Neuroscience, Mount Sinai School of Medicine, New York, New York
31 Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
32 Departments of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
33 Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
34 Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
35 Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, Illinois
36 University of Pittsburgh Alzheimer’s Disease Research Center, Pittsburgh, Pennsylvania
37 Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
38 Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, Indiana
39 Arizona Alzheimer’s Consortium, Phoenix, Arizona
40 Department of Psychiatry, University of Arizona, Phoenix, Arizona
41 Banner Alzheimer’s Institute, Phoenix, Arizona
42 Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology & Psychiatry, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
43 Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
44 Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
45 Department of Pathology and Immunology, Washington University, St. Louis, Missouri
46 Department of Neurology, Washington University, St. Louis, Missouri
47 Department of Pathology, University of Washington, Seattle, Washington
48 Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
49 Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
Acknowledgements

The National Institutes of Health, National Institute on Aging (NIH-NIA) supported multiple aspects of this work through the following grants: design and conduct of the study; centralized collection, management, analysis, and interpretation of the data; and preparation, review, and approval of the manuscript by the ADGC were funded by U01 AG032984 and RC2 AG036528; preliminary data collection and management, preliminary analyses, and approval of the manuscript by the individual component studies and datasets were funded for each member group as follows: NACC, U01 AG016976; NCRAD, U24 AG021886; NIA LOAD, U24 AG026395, R01 AG041797, U24 AG026390; Banner Sun Health Research Institute P30 AG019610; Boston University, P30 AG013846, U01 AG010483, R01 CA129769, R01 MH080295, R01 AG017173, R01 AG025259, R01 AG33193; Columbia University, P50 AG008702, R37 AG015473; Duke University, P30 AG02377, AG05128; Emory University, AG025688; Group Health Research Institute, U01 AG06781, U01 HG004610; Indiana University, P30 AG01033; Johns Hopkins University, P50 AG005146, R01 AG02688; Massachusetts General Hospital, P50 AG005134; Mayo Clinic, P50 AG016574; Mount Sinai School of Medicine, P50 AG005138, P01 AG02219; New York University, P30 AG00851, MO1RR00096, UL1 RR029893, 5R01 AG012101, SR01 AG022374, SR01 AG034161, IR01AG036502, IR01AG035137; Northwestern University, P30 AG013854; Oregon Health & Science University, P30 AG008017, R01 AG026916; Rush University, P30 AG010161, R01 AG019085, R01 AG15819, R01 AG17917, R01 AG0146; TGen, R01 NS059873; University of Alabama at Birmingham, P50 AG016582, UL1RR02777; University of Arizona, R01 AG031581; University of California, Davis, P30 AG010129; University of California, Irvine, P50 AG016573, P50, P50 AG016575, P50 AG016576, P50 AG016577; University of California, Los Angeles, P50 AG016570; University of California, San Diego, P50 AG005131; University of California, San Francisco, P50 AG023501, P01 AG019724; University of Kentucky, P30 AG028383, AG05144; University of Michigan, P50 AG008671; University of Pennsylvania, P30 AG010124; University of Pittsburgh, P50 AG005133, AG030653, AG041718; University of Southern California, P50 AG005142; University of Texas Southwestern, P30 AG012300; University of Miami, R01 AG027944, AG010491, R01 AG027944, AG021547, AG019757; University of Washington, P50 AG005136; Vanderbilt University, R01 AG019085; and Washington University, P50 AG005681, P01 AG03991. The Kathleen Price Bryan Brain Bank at Duke University Medical Center is funded by NINDS grant # NS39764, NIMH MH60451 and by Glaxo Smith Kline. Genotyping of the TGEN2 cohort was supported by Kronos Science. The TGen series was also funded by NIA grant AG03450 to AJM, The Banner Alzheimer’s Foundation, The Johnnie B. Byrd Sr. Alzheimer’s Institute, the Medical Research Council, and the state of Arizona and also includes samples from the following sites: Newcastle Brain Tissue Resource (funding via the Medical Research Council), local NHS trusts and Newcastle University, MRC London Brain Bank for Neurodegenerative Diseases (funding via the Medical Research Council), South West Dementia Brain Bank (funding via numerous sources including the Higher Education Funding Council for England (HEFCE), Alzheimer’s Research Trust (ART), BRACE as well as North Bristol NHS Trust Research and Innovation Department and DeNDrO), The Netherlands Brain Bank (funding via numerous sources including Stichting MS Research, Brain Net Europe, Hersenstichting Nederland Breinbrekend Werk, International Parkinson Fonds,
Alzheimer’s Disease Genetics Consortium Coauthors*

Alzheimer’s Disease Genetics Consortium Coauthor Affiliations

1Department of Neurology, Johns Hopkins University, Baltimore, Maryland; 2Department of Neurology, University of Michigan, Ann Arbor, Michigan; 3Geriatric Research, Education and Clinical Center (GRECC), VA Ann Arbor Healthcare System (VAAAH), Ann Arbor, Michigan; 4Michigan Alzheimer Disease Center, Ann Arbor, Michigan; 5Department of Neurology, University of California Los Angeles, Los Angeles, California; 6Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; 7Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas; 8Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois; 9Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois; 10Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Phoenix, Arizona; 11Departments of Psychiatry, Neurology, and Psychology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; 12National Alzheimer’s Coordinating Center, University of Washington, Seattle, Washington; 13Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; 14Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University, Chicago, Illinois; 15Swedish Medical Center, Seattle, Washington; 16Department of Neurology, University of California San Francisco, San Francisco, California; 17Department of Medicine, Duke University, Durham, North Carolina; 18Department of Pathology and Immunology, Washington University, St. Louis, Missouri; 19Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; 20USF Health Byrd Alzheimer’s Institute, University of South Florida, Tampa, Florida; 21Fred Hutchinson Cancer Research Center, Seattle, Washington; 22Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida; 23Department of Neuroscience, Mayo Clinic, Jacksonville, Florida; 24Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; 25Department of Neurology, University of Southern California, Los Angeles, California; 26Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama; 27Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona; 28Department of Neurology, University of California Irvine, Irvine, California; 29Department of Neurology, University of California Davis, Sacramento, California; 30University of Virginia School of Medicine, Charlottesville, Virginia; 31Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, California; 32Wien Center for Alzheimer’s Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, Florida; 33Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana; 34Department of Neurology, Indiana University, Indianapolis, Indiana; 35Department of Psychiatry, New York University School of Medicine, New York, New York.
York University, New York, New York; C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Charlestown, Massachusetts; Department of Neurosciences, University of California San Diego, La Jolla, California; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia; Emory Alzheimer’s Disease Center, Emory University, Atlanta, Georgia; Neurogenetics Program, University of California Los Angeles, Los Angeles, California; Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana; The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida; Department of Neurology, Emory University, Atlanta, Georgia; Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts; Department of Pathology (Neuropathology), University of Pittsburgh, Pittsburgh, Pennsylvania; Sanders-Brown Center on Aging, Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky; Taub Institute on Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University, New York, New York; Department of Pathology, Duke University, Durham, North Carolina; Sanders-Brown Center on Aging, Department Neurology, University of Kentucky, Lexington, Kentucky; Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, California; Department of Neurology, Oregon Health & Science University, Portland, Oregon; Department of Neurology, Portland Veterans Affairs Medical Center, Portland, Oregon; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California; Department of Neurology, Boston University, Boston, Massachusetts; Department of Pathology, Boston University, Boston, Massachusetts; Department of Neuropsychology, University of California San Francisco, San Francisco, California; Department of Neurobiology and Behavior, University of California Irvine, Irvine, California; Department of Pathology, University of Washington, Seattle, Washington; Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington; Department of Pathology, University of Michigan, Ann Arbor, Michigan; University of Pittsburgh Alzheimer’s Disease Research Center, Pittsburgh, Pennsylvania; Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland; Department of Preventive Medicine, University of Southern California, Los Angeles, California; Department of Medicine - Pulmonary, New York University, New York, New York; Department of Neurology, University of Miami, Miami, Florida; Department of Pathology, University of California San Diego, La Jolla, California; Department of Medicine, University of Washington, Seattle, Washington; School of Nursing Northwest Research Group on Aging, University of Washington, Seattle, Washington; Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Pathology, University of Southern California, Los Angeles, California; Department of Biostatistics, Mayo Clinic, Rochester, Minnesota; Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Department of Neurology, Mayo Clinic, Rochester, Minnesota; Alzheimer’s Disease Center, New York University, New York, New York; Department of Neurology, University of Texas Southwestern, Dallas, Texas; Department of Psychiatry, Mount Sinai.
School of Medicine, New York, New York; 80Department of Psychiatry, University of Southern California, Los Angeles, California; 81Center for Human Genetics and Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; 82Department of Pathology, Johns Hopkins University, Baltimore, Maryland; 83Sanders-Brown Center on Aging, Department of Anatomy and Neurobiology, University of Kentucky, Lexington, Kentucky; 84Department of Neurology, Columbia University, New York, New York; 85Department of Pathology & Laboratory Medicine, University of California Los Angeles, Los Angeles, California; 86Taub Institute on Alzheimer’s Disease and the Aging Brain, Department of Pathology, Columbia University, New York, New York; 87Department of Psychiatry, Northwestern University Feinberg School of Medicine, Chicago, Illinois; 88Department of Psychiatry & Behavioral Sciences, Duke University, Durham, North Carolina; 89Department of Pathology, Oregon Health & Science University, Portland, Oregon; 90Evelyn F. McKnight Brain Institute, Department of Neurology, Miller School of Medicine, University of Miami, Miami, Florida

Author Contributions

Competing Financial Interests

T.D.B. received licensing fees from and is on the speaker’s bureau of Athena Diagnostics, Inc. M.R.F. receives research funding from BristolMyersSquibb Company, Danone Research, Elan Pharmaceuticals, Inc., Eli Lilly and Company, Novartis Pharmaceuticals

JAMA Neurol. Author manuscript; available in PMC 2015 February 03.
Corporation, OctaPharma AG, Pfizer Inc., and Sonexa Therapeutics, Inc; Receives honoraria as scientific consultant from Accera, Inc., Astellas Pharma US Inc., Baxter, Bayer Pharmaceuticals Corporation, Bristol-Myers-Squibb, Eisai Medical Research, Inc., GE Healthcare, Medavante, Medivation, Inc., Merck & Co., Inc., Novartis Pharmaceuticals Corp., Pfizer, Inc., Prana Biotechnology Ltd., QR Pharma., Inc., The sanofi-aventis Group, and Toyama Chemical Co., Ltd.; and is speaker for Eisai Medical Research, Inc., Forest Laboratories, Pfizer Inc. and Novartis Pharmaceuticals Corporation. A.M.G. has research funding from AstraZeneca, Pfizer and Genentech, and has received remuneration for giving talks at Pfizer and Genentech. R.C.P. is on the Safety Monitor Committee of Pfizer, Inc. (Wyeth) and a consultant to the Safety Monitoring Committee at Janssen Alzheimer’s Immunotherapy Program (Elan), to Elan Pharmaceuticals, and to GE Healthcare. R.E.T. is a consultant to Eisai, Japan in the area of Alzheimer’s genetics and a shareholder in, and consultant to Pathway Genomics, Inc, San Diego, CA.

References

28. QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studies. 2006 computer program.

JAMA Neurol. Author manuscript; available in PMC 2015 February 03.
Figure 1. Boxplots for age-at-onset (AAO) by ADGC dataset
Table 1

Association with age-at-onset (AAO) of SNPs most significantly associated with LOAD in nine genomic regions and APOE

SNPs presented demonstrated strongest associations within each of ten genomic regions with associations of genome-wide statistical significance ($P \leq 5.0 \times 10^{-8}$) with LOAD risk. P-values for AAO associations exceeding the multiple hypothesis testing threshold ($P<0.005$) are shown in bold.

<table>
<thead>
<tr>
<th>SNP</th>
<th>CH:MB</th>
<th>Nearest Gene</th>
<th>MA</th>
<th>MAF</th>
<th>AAO (Minimal Adjustment Model)</th>
<th>AAO (Extended Adjustment Model)</th>
<th>LOAD Risk (from Naj et al.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>β (95% CI)</td>
<td>P</td>
<td>Het P</td>
</tr>
<tr>
<td>rs6701713</td>
<td>1:207.8</td>
<td>CR1</td>
<td>A</td>
<td>0.24</td>
<td>-0.41 (-0.65, -0.17)</td>
<td>7.17x10^{-4}</td>
<td>0.405</td>
</tr>
<tr>
<td>rs7561528</td>
<td>2:127.9</td>
<td>BIN1</td>
<td>A</td>
<td>0.37</td>
<td>-0.31 (-0.52, -0.09)</td>
<td>4.78x10^{-4}</td>
<td>0.855</td>
</tr>
<tr>
<td>rs9349407</td>
<td>6:47.5</td>
<td>CD2AP</td>
<td>C</td>
<td>0.32</td>
<td>0.765 (0.25, 0.19)</td>
<td>0.266</td>
<td>-0.14 (-0.40, 0.11)</td>
</tr>
<tr>
<td>rs11767557</td>
<td>7:143.1</td>
<td>EPHA1</td>
<td>C</td>
<td>0.18</td>
<td>0.03 (-0.26, 0.32)</td>
<td>0.830</td>
<td>0.861</td>
</tr>
<tr>
<td>rs1532278</td>
<td>8:27.5</td>
<td>CLU</td>
<td>T</td>
<td>0.37</td>
<td>0.661 (0.05, 0.28)</td>
<td>0.137</td>
<td>0.860</td>
</tr>
<tr>
<td>rs4938933</td>
<td>11:60.0</td>
<td>MS4A4A</td>
<td>C</td>
<td>0.36</td>
<td>0.448 (0.09, 0.31)</td>
<td>0.454</td>
<td>0.18 (-0.23, 0.27)</td>
</tr>
<tr>
<td>rs561655</td>
<td>11:85.8</td>
<td>PICALM</td>
<td>G</td>
<td>0.38</td>
<td>0.33 (-0.12, 0.55)</td>
<td>2.23x10^{-3}</td>
<td>0.915</td>
</tr>
<tr>
<td>rs3752246</td>
<td>19:1.1</td>
<td>ABCA7</td>
<td>G</td>
<td>0.34</td>
<td>-0.27 (-0.55, 0.02)</td>
<td>0.700</td>
<td>-0.19 (-0.51, 0.13)</td>
</tr>
<tr>
<td>Haplotype (rs7412/rs429358)</td>
<td>19:45.4</td>
<td>APOE</td>
<td>C4</td>
<td>0.35</td>
<td>-2.45 (-2.68, -2.21)</td>
<td>3.30x10^{-3}</td>
<td>0.0941</td>
</tr>
<tr>
<td>rs3865444</td>
<td>19:51.7</td>
<td>CD33</td>
<td>A</td>
<td>0.20</td>
<td>0.377 (0.10, 0.13, 0.33)</td>
<td>0.596</td>
<td>0.13 (-0.13, 0.38)</td>
</tr>
</tbody>
</table>

CH:MB, chromosome:position (in mega base pairs, build 19); MA, minor allele; MAF, minor allele frequency; β, Beta coefficient for AAO from meta-analysis (# years difference in AAO per copy of the minor allele); OR, odds ratio; 95% CI, 95% Confidence Interval; P, P-value; Het P, P-value for heterogeneity across studies.
Table 2

Risk-weighted burden analysis results for APOE and 9 LOAD Candidate Genes

Beta coefficients (β), 95% Confidence Intervals, and P-values are from four logistic regression models examining weighted scores for the peak SNP associations in APOE and 9 LOAD candidate genes. Scores are the product of the log-transformed odds ratio for each SNP association multiplied by minor allele dosage from imputed genotype probabilities.

<table>
<thead>
<tr>
<th></th>
<th>Model 1: Adjustment for PCs & Site</th>
<th>Model 2: Adjustment for Model 1 + APOE</th>
<th>Model 3: Adjustment for Model 1 + 9 LOAD Genes</th>
<th>Model 4: Adjustment for Model 1 + APOE + 9 LOAD Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β (95% CI) P</td>
<td>β (95% CI) P</td>
<td>β (95% CI) P</td>
<td>β (95% CI) P</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>74.2 (73.5, 75.0) <10^{-32}</td>
<td>70.6 (69.8, 71.4) <10^{-32}</td>
<td>72.9 (71.6, 74.1) <10^{-32}</td>
<td>69.1 (67.9, 70.4) <10^{-32}</td>
</tr>
<tr>
<td>CR1 Score</td>
<td>– – – –</td>
<td>– – – –</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>BIN1 Score</td>
<td>– – – –</td>
<td>– – – –</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>CD2AP Score</td>
<td>– – – –</td>
<td>– – – –</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>EPHA1 Score</td>
<td>– – – –</td>
<td>– – – –</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>CLU Score</td>
<td>– – – –</td>
<td>– – – –</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>MS4A4A Score</td>
<td>– – – –</td>
<td>– – – –</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>PICALM Score</td>
<td>– – – –</td>
<td>– – – –</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>ABCA7 Score</td>
<td>– – – –</td>
<td>– – – –</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>CD33 Score</td>
<td>– – – –</td>
<td>– – – –</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>APOE Score</td>
<td>– – – –</td>
<td>– – – –</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>ACT</td>
<td>9.67 (8.62, 10.7) 3.31\times10^{-72}</td>
<td>10.3 (9.30, 11.4) 1.10\times10^{-44}</td>
<td>11.15 (9.64, 12.66) 8.89\times10^{-47}</td>
<td>11.9 (10.42, 13.39) 6.69\times10^{-55}</td>
</tr>
<tr>
<td>ADC1</td>
<td>-1.76 (-2.60, -0.93) 3.66\times10^{-5}</td>
<td>0.54 (-0.32, 1.39) 0.219</td>
<td>-1.74 (-2.81, -0.67) 0.0039</td>
<td>0.62 (-0.45, 1.70) 0.256</td>
</tr>
<tr>
<td>ADC2</td>
<td>-0.03 (-1.96, -0.10) 0.0294</td>
<td>-1.47 (-2.38, -0.56) 0.0157</td>
<td>0.33 (-1.20, 1.87) 0.671</td>
<td>-0.09 (-1.59, 1.42) 0.909</td>
</tr>
<tr>
<td>ADC3</td>
<td>0.19 (-0.74, 1.13) 0.684</td>
<td>0.40 (-0.52, 1.32) 0.393</td>
<td>1.17 (-0.68, 3.02) 0.215</td>
<td>1.31 (-0.50, 3.13) 0.155</td>
</tr>
<tr>
<td>ADNI</td>
<td>-1.20 (-2.57, 0.18) 0.0882</td>
<td>-0.91 (-2.26, 0.44) 0.187</td>
<td>-0.26 (-1.90, 1.39) 0.758</td>
<td>0.22 (-1.39, 1.84) 0.787</td>
</tr>
<tr>
<td>GenADA</td>
<td>0.36 (-0.57, 1.28) 0.449</td>
<td>-1.42 (-2.34, -0.50) 0.00258</td>
<td>2.46 (1.19, 3.72) 1.39\times10^{-4}</td>
<td>0.79 (-0.46, 2.04) 0.216</td>
</tr>
<tr>
<td>LOAD</td>
<td>-0.67 (-1.49, 0.15) 0.111</td>
<td>-0.42 (-0.40, 1.23) 0.316</td>
<td>-0.37 (-1.55, 0.80) 0.533</td>
<td>0.77 (-0.38, 1.93) 0.190</td>
</tr>
<tr>
<td>MIRAGE</td>
<td>-3.08 (-4.04, -2.11) 4.66\times10^{-10}</td>
<td>0.37 (-0.64, 1.38) 0.472</td>
<td>-2.17 (-3.51, -0.83) 0.0046</td>
<td>1.36 (0.27, 2.72) 0.0504</td>
</tr>
<tr>
<td>OHSU</td>
<td>11.9 (10.5, 13.3) 2.06\times10^{-59}</td>
<td>12.5 (11.1, 13.9) 5.29\times10^{-48}</td>
<td>13.55 (11.72, 15.39) 5.32\times10^{-47}</td>
<td>14.4 (12.6, 16.2) 1.16\times10^{-54}</td>
</tr>
<tr>
<td>ROSMAP</td>
<td>11.4 (10.3, 12.5) 6.52\times10^{-90}</td>
<td>9.21 (8.11, 10.3) 4.63\times10^{-39}</td>
<td>13.26 (11.57, 14.95) 1.34\times10^{-32}</td>
<td>11.22 (9.55, 12.9) 3.11\times10^{-39}</td>
</tr>
<tr>
<td>TGEN2</td>
<td>0.55 (-1.03, 2.13) 0.494</td>
<td>0.69 (-0.86, 2.24) 0.385</td>
<td>1.47 (-3.09, 6.03) 0.528</td>
<td>1.55 (-2.92, 6.03) 0.497</td>
</tr>
<tr>
<td>UM/VU/MSSM</td>
<td>-0.33 (-1.20, 0.53) 0.449</td>
<td>-0.6 (-1.45, 0.25) 0.165</td>
<td>1.18 (-0.10, 2.46) 0.0704</td>
<td>0.92 (-0.33, 2.18) 0.149</td>
</tr>
<tr>
<td></td>
<td>Model 1: Adjustment for PCs & Site</td>
<td>Model 2: Adjustment for Model 1 + APOE</td>
<td>Model 3: Adjustment for Model 1 + 9 LOAD Genes</td>
<td>Model 4: Adjustment for Model 1 + APOE + 9 LOAD Genes</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>β (95% CI)</td>
<td>P</td>
<td>β (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>UPITT</td>
<td>-1.33 ($-2.18, -0.47$)</td>
<td>0.0233</td>
<td>-0.61 ($-1.45, 0.23$)</td>
<td>0.155</td>
</tr>
<tr>
<td>PC1</td>
<td>6.76 ($3.09, 10.4$)</td>
<td>3.10×10^{-4}</td>
<td>6.16 ($2.56, 9.76$)</td>
<td>8.01×10^{-4}</td>
</tr>
<tr>
<td>PC2</td>
<td>1.12 ($-2.60, 4.84$)</td>
<td>0.554</td>
<td>1.99 ($-1.66, 5.64$)</td>
<td>0.285</td>
</tr>
<tr>
<td>PC3</td>
<td>-0.89 ($-4.54, 2.77$)</td>
<td>0.634</td>
<td>-0.34 ($-3.93, 3.24$)</td>
<td>0.852</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>F (df1, df2)</th>
<th>164.2 (13, 9114)</th>
<th>184.8 (14, 9113)</th>
<th>103.3 (22, 9105)</th>
<th>119.1 (23, 9104)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>$<10^{-100}$</td>
<td>$<10^{-100}$</td>
<td>$<10^{-100}$</td>
<td>$<10^{-100}$</td>
</tr>
<tr>
<td>Multiple R^2</td>
<td>0.1898</td>
<td>0.2211</td>
<td>0.1998</td>
<td>0.2313</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.1886</td>
<td>0.2199</td>
<td>0.1979</td>
<td>0.2294</td>
</tr>
</tbody>
</table>